Revo Intercooler
VW Polo GTI (AW)
The Revo Intercooler utilises unique design features to lower intake air temperatures, minimise pressure drop and allows the engine to produce impressive power and torque with Revo Software. The custom end tank profile promotes internal laminar flow, decreases turbulence, and increases charge air speed to utilise the larger bar and plate core more efficiently. This enhances the Revo intercooler charge air cooling capability, giving you access to more power throughout the rev range.
The limitations of the stock intercooler were apparent at early stages of testing and development. The stock part consistently struggled to manage charge air temperatures in extreme scenarios without any vehicle modifications. Testing showed this issue becomes vastly amplified on tuned vehicles, with power losses observed under daily driving conditions. The Revo Intercooler has been designed to improve on every thermal management aspect of the stock part, lowering intake air temperatures by up to 33°C (vs. the stock intercooler) and allowing you to drive harder, for longer.
Key Features
- Balanced Bar & Plate Core Design
- Fully Cast End Tanks
- CNC-machined, adjustable mounting bracket system
- 53.85% increase in external core volume
- 26.96% increase in frontal surface area
- Up to 32.81°C reduction in Intake Air Temperatures (IATs)
- Up to 14.74 axle HP, 25.24 axle Torque (Nm) gain
- +0.03psi average increase in pressure drop throughout 6 consecutive dyno runs
Increased Core Volume
The Revo Intercooler was built around a simple principle; create a cooler that can keep up with your demand for power. To do this, the Revo Intercooler has a 54% larger external core volume than the stock intercooler, while retaining OE-level fitment. Revo’s unique bar and plate, stacked core design fills every cubic millimeter of available space around the intercooler cavity, while Revo engineers’ 3D scanning and 3D printing technologies ensure the Revo part fits perfectly within all the stock shrouds, core supports and miscellaneous engine bay components without trimming or modifications.
Increased Frontal area
More frontal surface area allows an intercooler to utilise more of the cold ambient air entering the engine bay. All else being equal; a taller, thinner intercooler will perform better than a shorter, deeper intercooler with the same core volume. For peak thermal performance, maximizing core frontal surface area is almost as important as core volume and type, so the Revo intercooler offers the largest frontal surface area available with a 27% increase in area over the stock part.
End Tank Design
End tanks dictate how the core interacts with the charge air; effective end tanks are the differentiator between good and great intercoolers. Smaller, tighter end tanks will have reduced cross-sectional flow areas and typically restrict charge air from reaching the edges of the core, even with airflow fins integrated into the tanks. This increases pressure drop and leaves parts of the core underutilised – hampering the performance of even the largest, highest quality cores. Conversely, properly designed tanks work in harmony with a specific core type and size to maximize cross-sectional flow area and distribute charge air evenly over the entire core; for maximum thermal performance with minimal pressure drop. The Revo intercooler is no exception, with end tanks designed concurrently to the stacked core geometry to provide the largest internal tank volumes and cross-sectional flow areas possible in the avaliable space. This allows the Revo stacked bar and plate core to operate at its full cooling potential, lowering Intake Air Temperatures (IATs) up to 33°C over stock while only increasing pressure drop an average of 0.03 PSI over the stock part.
Bar & Plate
In terms of thermal performance, bar and plate core constructions almost always outperform a similarly specified and sized tube and fin counterpart. However, not all bar and plate cores are created equal, and this has given rise to many misconceptions about pressure drop and cooling performance of each core type. Each aspect of a bar and plate core’s design, on both the cold and hot side, significantly affect its performance; from passage size and fin type/density down to smaller details like material and bar/plate thicknesses. Each of these details must also be balanced with the others to create a core that maximises cooling capacity without significantly increasing pressure drop. Revo engineers have spent years developing a set of balanced bar and plate core parameters, painstakingly scrutinising every core characteristic with different suppliers, to create intercooler cores that offer some of the best thermal performance characteristics in the industry while maintaining OE drivability by keeping pressure drop values equal to or lower than stock.
Details
The subtle design features of the intercooler kit make it a Revo product. The Revo intercooler’s mounting system features CNC-machined billet brackets with adjustability in three axis, to maintain the highest quality and fitment standards on every kit, in every (AW) Polo GTI engine bay. Each intercooler also features stainless-steel thread inserts to prevent any thread damage during installation and adjustment. Both hose connections feature anti-release ribs to securely hold the OE hoses, while the entire kit is coated with an anti-corrosion, heat-conducting powder coating to ensure natural corrosion, oil and other adverse engine bay environmental factors have no effect on the performance of the Revo kit over the life of the vehicle.